Plumbing Graphs with Matter

Shi Cheng

IFT, University of Warsaw

July 15, 2022

based on a work (to appear) with P. Sułkowski

Motivation

- 3d $\mathcal{N}=2$ theories have mixed Chern-Simons levels, which have not been extensively studied yet.
- Some pure abelian theories can be engineered by plumbing manifolds [Gukov,] .
- We want to discuss more abelian theories with generic matter.
- We want to understand knots-quivers correspondence [Sułkowski,]

3d $\mathcal{N}=2$ theories

• There are mixed Chern-Simons levels between gauge nodes $U(1) \times U(1)$

$$S_{CS}=k_{ij}\int A_i dA_j\,,\quad k_{ij}=k_{ji}\,,$$

which receive contributions form chiral multiplets. The effective Chern-Simons levels should be integers.

- For each gauge node U(1), there is a FI parameter ξ , which is associated to the topological symmetry U(1).
- For each chiral multiplet, there is a real mass parameter m, which is associated to a flavor symmetry U(1).
- ullet There could be a superpotential ${\mathcal W}$ in the Lagrangian.

3d-3d correspondence

• Compactifying 6d (2,0) theories on three-manifolds M_3 leads to 3d N=2 theories,

6d (2,0) theories
$$\xrightarrow{M_3}$$
 3d $N=2$ theories $T[M_3,G]$

- We only consider abelian theories, and hence only one M5-brane wraps the M_3 .
- In particular, the M_3 can be plumbing manifolds.

Plumbing graphs

- Plumbing manifolds are represented by plumbing graphs.
- Plumbing graphs: each black node denotes a gauge group $U(1)_k$. The lines are linking numbers.

• Plumbing graphs encode the linking number K_{ij} between circles.

$$K_{ij} = \begin{cases} k_{ii}, & i = j \\ 1, & i \neq j \end{cases}$$

• Plumbing graphs engineers pure gauge theories $U(1) \times \cdots \times U(1)$ with mixed CS levels K_{ij} , if we ignore the decoupled adjoint chiral multiplets.

Plumbing graphs

• For example, the lens space $L(p,q)=S^3_{-p/q}({\sf unknot})$ is denoted by

- Lens space gives rise to a pure gauge theory $U(1)_{p/q}$ or equivalently $U(1) \times \cdots \times U(1)$.
- This example suggests that there are many equivalent or dual plumbing theories, related by Kirby moves of gauge nodes.

Kirby moves for gauge nodes

Kirby moves are some operations to produce equivalent graphs

- Kirby moves can be interpreted as integrating out the gauge nodes (the node in orange circle).
- Because the contribution of U(1) to sphere partition function is a Gaussian integral

$$Z_{S_b^3} = \int dx \ e^{kx^2 + (\cdots)x} \times \text{(other terms)}.$$

Kirby moves for gauge nodes

• For example,

There is a problem left: there is no matter for plumbing graphs.
 We want to add chiral multiplet, such as fundamental matter F, anti-fundamental matter AF, bifundamental matter, and etc.

Matter

- One can add chiral multiplets to the plumbing theories.
- We use a gray box \blacksquare to denote the matter with charge q under gauge nodes. For (anti)fundamental matter \mathbf{F} and \mathbf{AF} , $q=\pm 1$,

 After adding matter, plumbing graphs become some kinds of quiver diagrams.

Kirby moves for matter: *ST*-transformation

- For the Lagrangian of 3d theories, there is a $SL(2,\mathbb{Z})$ action [Witten]. $ST \in SL(2,\mathbb{Z})$ with $(ST)^3 = 1$.
- ST transformations change the polarization of $M_3[Gukov]$,
- *ST*-transformation is the process of gauging a flavor symmetry and introduce a new gauge node

$$(ST)^{\pm}: \quad \mathcal{L}(A) \rightarrow \mathcal{L}(A) \pm \frac{1}{2} \tilde{A} dA \pm \frac{1}{4} \tilde{A} d\tilde{A}$$

Graphically,

$$\begin{array}{ccc}
k & \xrightarrow{(ST)^{\pm 1}} & \xrightarrow{\pm 1} \\
k & & \downarrow \frac{1}{2} & \pm \frac{1}{2}
\end{array}$$

 Therefore, ST can be viewed as a Kirby move for matter, which is analogous to

$$\downarrow_k \longrightarrow \downarrow_{k\pm 1 \pm 1}^{\pm 1}$$

Kirby moves for matter: *ST*-transformation

• *ST*-transformation is a duality between theories, as its provides an mathematical identity for the contribution of matter

$$(ST)^{\pm} : s_b \left(\frac{iQ}{2} - z\right) = e^{\mp \frac{\pi i}{2} \left(\frac{iQ}{2} - z\right)^2} \int dx \, e^{\mp \frac{\pi i}{2} x^2 \mp 2\pi i \, zx - \frac{\pi Q}{2} x} s_b \left(\frac{iQ}{2} - x\right)$$

• ST leads to the triality between $U(1)_{\pm 1/2} + 1\mathbf{F}$ and a free matter \mathbf{F} :

where linking numbers are effective CS levels.

• *ST* can be viewed as a nontrival replacement that introduces new gauge nodes and a mixed CS level.

Kirby moves for matter: *ST*-transformation

• For bifundamental matter,

• For trifundamental matter,

• Therefore, matter can be turned into **F** via *ST*.

Kirby moves for matter

- One can Kirby move a matter for at most three time because of the equivalence relation $(ST)^3 = 1$.
- Kirby moves for gauge nodes and *ST*-transformation can be combined to generate equivalent plumbing graphs, which suggest dual theories, if we characterize 3d theories by mixed CS levels.

Examples: $U(1)_k + 3F$

One can perform Kirby moves

• For $k=-\frac{5}{2}$ or $-\frac{1}{2}$, one can get very symmetric graphs with loops

• For $k=\pm\frac{3}{2}$, the central node has a vanishing CS level $U(1)_0$, which leads to a Delta function $\delta(x_i)$ that reduces the number of gauge nodes. One can eventually get bifundamentals

Examples: mirror theories

Mirror dual theories have the same plumbing graphs.

$$U(1)_{\pm 1} + 1\mathbf{F} + 1\mathbf{AF} \qquad \stackrel{\text{mirror}}{\longleftarrow} \qquad U(1)_{\mp 1} + 2\mathbf{F}$$

$$\downarrow 1 \qquad \downarrow -1 \qquad \downarrow \qquad \downarrow \pm 1 \qquad \longleftarrow \qquad \downarrow + 1 \qquad \downarrow$$

The Abelian mirror pair

$$U(1)_{-\frac{N_f}{2}} + N_f \mathbf{F} \quad \stackrel{\mathsf{mirror}}{\longleftarrow} \quad [1] - U(1) - U(1) - U(1) - [1]$$

can be related through Kirby moves. For example, when $N_f = 4$, one can inserted nodes $U(1)_0$

Seiberg-like duality

Seiberg duality introduces a superpotential and a matter

One simple example is the SQED-XYZ dual pair

$$U(1)_0 + 1\mathbf{F} + 1\mathbf{AF} \longleftrightarrow \{X, Y, Z\} \text{ with } \mathcal{W} = XYZ$$

The associated sphere partition functions are equivalent

$$\int dx e^{-2\pi i zx} s_b \left(iQ/2 \pm x - y \right) = s_b(y \pm z) s_b \left(iQ/2 - 2y \right)$$

Seiberg-like duality

- However, Kirby moves for this mirror pair does lead to integrating theories.
- We should gauge the flavor symmetries for mass parameters and introduce FI parameters

$$\int \mathbf{gauge} := \int dy \, dz \, e^{-\pi i (\mathbf{a}y^2 + \mathbf{b}z^2 + 2\mathbf{c} \, yz)} e^{2\pi i \, (\boldsymbol{\xi}_y y + \boldsymbol{\xi}_z z)}$$

• The mirror pair becomes $\int \mathbf{gauge} \ Z^{SQED} = \int \mathbf{gauge} \ Z^{XYZ}$

where we move one matter to the left graph.

Seiberg-like duality

 Applying Kirby moves for the above graph pair leads to interesting theories.

• The Seiberg-like dual graphs becomes 2-3 moves

Triangles A,B,E

• The integral triangle obtained by Kirby moves is not unique.

• The cases **A** and **B** are firstly found in [Longi,], which are named unlinking and linking.

Triangles A,B,E

The relations between these cases are

- Triangles **A**,**B** and **E** are related by an operation $\mathcal{W}^{-1} \circ (ST)^* \circ \mathcal{W}$.
- For specific r, k, s, there may be other triangles relating to these cases by ST-transformations.

With external nodes

 Seiberg dual graphs are local duality on subgraphs. In the presence of other nodes

• Eventually, Kirby moves lead to the 2-3 move

 If other nodes connect to the two pink nodes, then they also connect to the introduced node.

Partially gauging

 One can also partially gauge the flavor symmetries to decouple a matter, and becomes a 2-2 move

• If this dual pair couples to other gauge nodes

 Kirby moves on partial gauging graphs also fall in the cases A, B and E.

Higgsing

 If the mass parameters for F and AF are equal then Higgsing happens

 Which can be interpreted as Higging a D5-brane in 3d brane webs.

Outlook

- Construct nonabelian theories.
- More generic dualities, monopole superpotentials.
- Produce fundamental matter using M5-branes.
- Geometrically add matter.
- Other constructions, such as CY4, M2 probe orbifolds, quiver mutations, and 3d brane webs.
- Higher form symmetry.